Trigonometry
Trigonometric Ratio Formulas
Sin θ = Perpendicular/Hypotenuse ( p/h)
Cos θ = Base/Hypotenuse (b/h)
Tan θ = Perpendicular/Base (p/b)
Sec θ = Hypotenuse/Base (h/b)
Cosec θ = Hypotenuse/Perpendicular (h/p)
Cot θ = Base/Perpendicular (b/p)
h2 = p2 + b2
p2 = h2 – b2
b2 = h2 – p2
Reciprocal Identities
Sin θ = 1/cosec θ
Cosec θ = 1/sin θ
Cos θ = 1/sec θ
Sec θ = 1/cos θ
Tan θ = 1/cot θ
Cot θ = 1/tan θ
Pythagorean Identities
Sin2θ + Cos2θ = 1
Sec2θ – Tan2θ = 1
Cosec2θ – Cot2θ = 1
Tanθ = Sinθ/Cosθ
Cotθ = Cosθ/Sinθ
Trigonometric Functions in Four Quadrants
First Quadrant:
sin (π/2 – θ) = cos θ
cos (π/2 – θ) = sin θ
sin (2π + θ) = sin θ
cos (2π + θ) = cos θ
Second Quadrant:
sin (π/2 + θ) = cos θ
cos (π/2 + θ) = – sin θ
sin (π – θ) = sin θ
cos (π – θ) = – cos θ
Third Quadrant:
sin (π + θ) = – sin θ
cos (π + θ) = – cos θ
sin (3π/2 – θ) = – cos θ
cos (3π/2 – θ) = – sin θ
Fourth Quadrant:
sin (3π/2 + θ) = – cos θ
cos (3π/2 + θ) = sin θ
sin (2π – θ) = – sin θ
cos (2π – θ) = cos θ
Even and Odd Angle Formulas
sin(-θ) = – sinθ
cos(-θ) = cosθ
tan(-θ) = -tanθ
cot(-θ) = -cotθ
sec(-θ) = secθ
cosec(-θ) = – cosecθ
Co-function Formulas
sin(900– θ) = cosθ
cos(900– θ) = sinθ
tan(900– θ) = cotθ
cot(900– θ) = tanθ
sec(900– θ) = cosecθ
cosec(900– θ) = secθ
Trigonometric Table